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Abstract

To evaluate the mechanical strength of fiber-reinforced composites it is necessary to consider singular stresses at the
end of fibers because they cause crack initiation, propagation, and final failure. The singular stress field is controlled by
generalized stress intensity factor (GSIF) defined at the fiber end. In this study, periodic and zigzag arrays of cylindrical
inclusions under longitudinal tension are considered in comparison with the results for a single fiber. The unit cell
region is approximated as an axi-symmetric cell; then, the body force method is applied, which requires the stress
and displacement fields due to ring forces in infinite bodies having the same elastic constants as those of the matrix
and inclusions. The given problem is solved on the superposition of two auxiliary problems under different boundary
conditions. To obtain the GSIF accurately, the unknown body force densities are expressed as piecewise smooth func-
tions using fundamental densities and power series. Here, the fundamental densities are chosen to represent the sym-
metric stress singularity, and the skew-symmetric stress singularity. The GSIFs are systematically calculated with
varying the elastic modulus ratio and spacing of fibers. The effects of volume fraction and spacing of fibers are discussed
in fiber-reinforced plastics.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

To evaluate the mechanical strength of fiber-reinforced composites it is necessary to consider singular
stresses at the end of fibers because they cause crack initiation, propagation, and final failure (Nisitani
et al., 1993). Consider a cylindrical inclusion with a local polar coordinate as shown in Fig. 1 as a model
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Fig. 1. Generalized stress intensity factors for a single fiber when v; = vy = 0.3(Fy;, = KL,;I/(GO\/EZ}?)" ), Fuz, = KIL,;Z/(CTO\/%]}#VZ)).

of fiber. Then, the singular stress around the corner of an inclusion can be expressed by the following equa-
tions (Chen and Nisitani, 1993; Noda et al., 2003). Here, the generalized stress intensity factors Kj ;1, Ky
can be regarded as an extension of the ordinary stress intensity factors, which are usually defined for cracks,
to inclusion corners.

= SM () 4 ) (1= 1,2) (1)
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Here,
C (1 —B)sin {1y} + (1 —o)sin {4 (x — )} + A1 (e — B) siny
"+ B sin{a(2n — )} + (1 +a)sin {4 (y — 1)} + A (o — B) siny 20
c
C. — (1 =p)sin{lay} + (1 — o) sin{Ax(m — y)} — Za(ax — B) siny
P77 (1+ B)sin {2n — )} + (1 +a)sin {A2(y — n)} — Jo(x — p) siny
OCZGI(KM+1)_GM(KI+1) ﬁ:Gl(KM_l)_GM(Kl_l) (2d)

GI(KM—FI)-’-GM(KI—’-I)’ GI(KM+1)+GM(K1+1)

where

(3 =v) (for plane stress),
(1 + V,') (26)

k; =3 —4v; (for plane strain), (i=M,I)

K, =

In these equations, o, f§ are Dundurs parameters (Dundurs, 1967), and (G, vvm) and (Gy, vy) are shear
modulus and Poisson’s ratio of the matrix and inclusion, respectively. Quite a few studies have been made
for singular stresses at the fiber ends (Christman et al., 1989; Tvergaard, 1990). However, little attention
has been paid to the generalized stress intensity factors as shown in Eq. (1) because usually it is very dif-
ficult to obtain them by using ordinary numerical procedure using such as finite element techniques. Fig. 1
shows generalized stress intensity factors at a fiber end when a single fiber is in matrix (Noda et al., 2003).
In Fig. 1, 4, /4, are the root of the following eigenequation (Bogy and Wang, 1971; Chen and Nisitani,
1993).

For mode I

Di(o, B,7,4) = (o — B)*72(1 — cos 2y) + 24 (ot — B) sin p{sin Ay + sin(27 — y)}
+ 24(0 — B)Bsinp{sin A(2mw — y) — sin Ay} + (1 — o) — (1 — %) cos 2/
+ (% = *) cos{24(y — 1)} = 0 (3)

Fig. 2. Singular stress fields near the tip of a V-notch.
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For mode 11

Dy(at, By, 2) = (a0 — B)*22(1 — cos 2y) + 2A(a — f) sin y{sin(2m — 7) + sin Ay}
— 20(a — B)Bsiny{sin 2(2m — y) —sin Ay} + (1 — &?) — (1 — B*) cos2An
+ (o2 — p*) cos{24(y — )} =0 (4)
Here, 4 is a real root of Eq. (1), and 4, is a real root of Eq. (2). In the vicinity of inclusion corners, plane
strain conditions can be assumed. Then, in this paper, we can put y = 37/2 (see Fig. 2 and the corner of
cylindrical inclusion in Fig. 1).

Since actual composites usually have many fibers, in this paper, periodic and zigzag arrays of cylindrical
inclusions under longitudinal tension are considered as models of many fibers (see Fig. 3). Then, the unit
cell region is approximated as an axi-symmetric cell as shown in Fig. 3(c), where the body force method of
analysis (Nisitani, 1967) will be applied.
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Fig. 3. Unit cell model for 3D arrays of inclusions: (a) periodic array, (b) zigzag array and (c) axi-symmetric approximation.
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Here, the body force method is based on superposition of the stress field due to point force. Then, the
problem is formulated as a system of singular integral equations, where the unknown functions are the den-
sities of body forces distributed in infinite bodies having the same elastic constants as those of the matrix
and inclusions. The unknown functions are expressed as piecewise smooth functions using two types of fun-
damental densities and power series, where the fundamental densities are chosen to express singular stresses
field exactly. Then, generalized stress intensity factors Ky, and Ky, at the fiber end are systematically
calculated with varying the elastic ratio Gy/Gy;, and aspect ratio of the unit cell /.»/l,, and volume fraction

of fibers V, = (I7,1.1)/(I},1.») (see Fig. 4).
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Fig. 4. (a) A cylindrical inclusion in a unit cell (#,0: average displacement at r = /,5, u.o: constant displacement at z = /.;). (b) Body
force distributed around the corner A (similar body force also distributed around the corner B).
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2. Singular integral equations of the body force method

In the previous study, the generalized stress intensity factors at a fiber end of a single fiber was studied
(Noda et al., 2003). In this paper, therefore, the method of analysis for arrays of fibers will be discussed.
Here, a zigzag array of cylindrical inclusions is taken as an example; then, the method of analysis will
be explained. The unit cell model in Fig. 3(b) can be analyzed in the following procedure. Here, /,; and
I, are dimensions of inclusion in the r- and z-directions, respectively (see Fig. 3). Also, /., and /., are dimen-
sions of unit cell in the r- and z-directions, u,q is an average displacement at r = /,, (see the definition in Fig.
4), u.o is a constant displacement at z = /.,. Denote the shear modulus and Poisson’s ratios of the matrix by
(Gm, vm) and the ones of the inclusions by (Gy, vi). Assume two infinite bodies ‘M’ and ‘I’ have the same
elastic constants of the ones of matrix and inclusions, respectively (see Fig. 4). On the idea of the body force
method, the problem is formulated as a system of singular integral equations as shown in Egs. (5) and (6).
Here, there are four types of unknown functions, that is,

(A) Body forces densities Fonq, Fivg distributed in the normal and tangential directions along the
fictitious boundary for inclusion in body ‘M’,

(B) Body forces densities Fy;, Fyy; distributed in the normal and tangential directions along the fictitious
boundary for inclusion in body ‘I, and

(C) Body forces densities Fyn, Fivp distributed in the normal and tangential directions along the
fictitious boundary for unit cell in body ‘M

(D) Body forces densities Fy1», Fiy» distributed in the normal and tangential directions along the fictitious
boundary for unit cell in body ‘I’. However, F,1,, Fi1» are not independent and calculated from F 5,
Fouo (see Eq. (11)).

In order to satisfy the boundary conditions for the interface and unit cell, the stress and displacement
fields due to ring forces acting in the r- and z-directions in an infinite body will be used. As an example,
RE™1 () s1) denotes the normal stress induced at the collocation point s; when the ring force with unit den-
sity Fon = 1 s acting at the point r;. Both points s; and ry are on the fictitious boundary of the inclusion
interface. The expression may be found in (Nisitani and Noda, 1984). The notation | ;, means integrating
the ring forces on the boundary for the cylindrical cavity in the body ‘M’, or the inclusion in the body ‘T,
and [ ,, means integrating the ring forces on the boundary of the unit cell

1

1
—anMl(Sl) —§Fn11(31)+/hF"M‘ (r1,51)Fami (r1)dr +/hf).M'(Vl»Sl)FtMl(Vl)drl
I I

/hf,',‘“(f’l,sl)an(f”l)drl —/hf,‘,“(rl,sl)Ftn(f”l)drl+/hf,‘,“Mz(Vz,Sl)Fan(Vz)drz

I I3

+ [ B (ry,51)Fova (r2)dry — /h‘,,F,','IZ(Vz,Sl)Fnlz(l”z)drz—/hmﬁlz(f’zysl)Faz(l”z)drz

A I b

=0 (5a)

1 1

—thMl(Sl)—§Ft11(51)+/h,,Ft"Ml(”bSl)Fan(Vl)drl+/hF‘M‘(i’bSl)FtMl(”l)d”l
1] ll

RE (ry, 51) Fon (1) dry —/ REm (ry,s0)Fan (m)dry + [ RS2 (72, 51) Fama (r2)dr

I I )

—|—/hZMZ(Vz,Sl)thz(l”z)di’z—/hF“Iz(l”z,Sl)Fnlz(i’z)di’z-F hl,,p,‘”(l”z,sl)Fuz(i’z)di’z

153 ) )

-0 (5b)
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hf;‘?M'(l”l,Sl)Fan(Vl)dh +/hi;Ml(rlasl)FtMl(’"l)drl _/hl;:”(rhsl)Fnll(ﬁ)dl"]
i

0 0y

—/hlu:;”(l”l,ﬁ)Fm(l”])drl =0 (SC)
0

/hZZ"MI(VhSl)Fan(Vl)d”l+/h5§M1(F17S1)FxM1(F1)dV1 —/hfz““(i’lasl)an(Vl)dVl

I Iy h

_ / hfz‘“(ﬁ,sl)FtIl(rl)dﬁ =0 ()
I

Egs. (5a)—(5d) express the boundary conditions along the interface of the inclusion, that is,
oM — 001 =0, Toem — Toa = 0, M — U1 =0, v — u; = 0. Here, (4, u-m) and (6w, Toov) are the dis-
placements and tractions, respectively, on the fictitious boundary of cylindrical cavities in body ‘M’. On
the other hand, (u,1,u.;) and (0,1, 74) are the displacements and tractions, respectively, on the fictitious
boundary of cylindrical inclusions in body ‘T’.

Similar to Eq. (5), the conditions along the boundary for the unit cell can be expressed by Eq. (7). Here,
point P is on the end z = L.,, and points Q and Q' are symmetric with respect to the plane z = /.,/2 on the
surface r = /,, (see Fig. 4). Then,

5 Iy
oy X nl, = / 0.
0

Trz|z:l:2 = 0’ le|

I
0 :/ o,
0

6'”|z:z - 6”'

2ndr,
z=ly (6)

=u, atz= 122

=l

2nrdr
2=l
z=lp—z = 0’ T"Z|z:z - Trz|2:122,z =0

u'”|z:z - ur|z:122,z = 2”"0’ uZ|z:z - uZ|z:lzzfz = Uz

1 1.2
Uy = 57— U
122 0

By considering an adjacent unit cell as shown in Fig. 4, it is seen that two points Q(/,,,z), Q'(/,2,1.> — 2)
should have similar displacement on r = /,,. Here, . and u,( are still unknown, the following two auxiliary
problems will be analyzed instead of solving Fig. 4 directly (Needleman, 1972; Tvergaard, 1981).

Here, an auxiliary problem as shown in Fig. 5(a) has the boundary condition, u.q = ¢, 1,9 = 0, where ¢;
is an arbitrary constant. The other auxiliary problem as shown in Fig. 5(b) has the boundary condition,
u,90 =0, u,o = c;. Under those boundary conditions, the stresses oy, 6,3, a3, g4 will be calculated from Eq.
(8). These stresses o1 ~ a4 defined by Eq. (8) will be used to express the problem in Fig. 4 by superposing
two auxiliary problems. Here, for example, ¢; is an average stress o. for the auxiliary problem in Fig. 5(a).

2nrdr atz=+l,

5 er
oy X nl, = / o,
0 z=ly
l

0y X 21l oly = / 6| 2ml.dz atr=1l,
=1 r=l
o (8)
o3 X nl,2,2 = / 0. 2nrdr atz==£l,
0

In
04 X 27[[,2[22 = / (% 27T1r2dZ at r = lrz

“la =1,

dz atr= l,-z

r=l,y

z=lzn
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Fig. 5. Auxiliary problems: (a) u,0 =0, u.o = ¢y, (b) u,0 = ¢y, -0 =0.

Dimensionless stress intensity factors for Figs. 4 and 5(a) and (b) are defined in Eq. (9) having relations (10)
(see Appendix A). Here, the eigenvalues 4; and A, are given as the roots of eigenequations (3) and (4).

Fy, = KI,A,/(UO\/EIlf;”), Fu,, = KII,AZ/(JO\/Ell;iZ)
i, = KI,Al/(Gl\/Elif}")a Fiis, = K/ (01l ) 9)

F, = KLA]/(US\/EUFM), Fhs =K/ (o3v/al; ™)
F(lz,,l] - (("2/‘71)11:?/1l F _ Ffuz - (02/0'1)1:?1712
1= (02/a1)(o3/aa) "2~ 1= (02/01)(03/04)
In this study, as shown in Eq. (11), the body forces densities, F,1», Fi» distributed along the fictitious

boundary for unit cell are also applied in body ‘I’ so as to produce the same deformations of body ‘M’
due to the body forces Fumaz, Fivo.

Fi, = (10)

e ] [Fwe] [ #2] [P
F F : = F F : ( 11 )

Since the relation (11) is satisfied, Egs. (5¢), (5d) does not include the integral involving the term 4™ (75, s)
etc.

3. Numerical solutions of singular integral equations

Numerical solutions will be explained by taking an example for the boundary conditions for corner A.
Fig. 6 illustrates boundary divisions for the solutions of Egs. (1)—(3) when /1., = 10, L.,/I.; =2, ,,/1.; = 5.
It should be noted that the body forces, F, and F} (see Fig. 4(b)), acting in the normal and tangential direc-
tions, should be expressed as a combination of symmetric mode I type rj“fl and skew-symmetric mode II
type r{‘r] to the bisector of the corners (Chen, 1992). Here, r; is a distance measured from the corner A. The
body force densities distributed in the regions A’2-A—-A2 is expressed as follows using fundamental densi-

. =1 Jp—1 : : 1 I
ties r{'", >~ and weight functions W, ~ W -
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Fig. 6. Boundary division when /1., = 10, L5/, =5, I,/l.; = 2.

Fomi (1) = an(rl)+Fan(r1) Wan(’”l)”;l 1“‘Wan(”l)”;z :
Fon(n) = tMl(rI)J'_F{lI\/Il( ):W{Ml(rl)r;l 1+W{11v11(”1)”i2 :

1 11 1 Al ppll a1 (12)
Fuou(r) = Foy (n) + Fop (r) = W (r)r' ™ + W (r)r?
Fai(rn) = Fyy () + Figy (1) = Wi (e + W (r)r ™
M M
W:]Ml(rl)zzanr’f 17 W:Ml(rl)zzbanI
n=1 n=1
M M
W;IM1(FI):ZCn”Y ! Willvn(”l)zzdn”TI
n=1 n=1
M M (13)
Wi (1) Zen Wi (r1) = an”’ffl

I
-

Wan(m) =D gt W) =D i

M M
n= =1

Egs. (12) and (13) do not include the terms expressing local uniform stretching and shear distortion at
the corner A. Therefore the body forces densities are applied also in the body ‘I’ in order to express local
uniform stretching and shear distortion at the corner A (see Eq. (11)).

On the numerical solution as shown in Egs. (12), (13), the singular integral equations (5)—(7) are reduced
to algebraic equations for the determination of the unknown coefficients a, ~ h,. These coefficients are
determined from the boundary conditions at suitably chosen collocation points. The generalized stress
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intensity  factors

Ky,,, Kn,, for

angular

corners

can be

w(0), wi(0), wi(0), w{(0) at the corner tip (Noda et al., 1996).

4. Results and discussion

4.1. Convergence of the results

obtained from the

values of

In the following calculations Poisson’s ratio is assumed as v; = vy; = 0.3. Generalized stress intensity fac-
tors K 1, K12 are analyzed with varying dimensions of inclusion and unit cell, and elastic ratio Gi/Gy.

Table 1

Convergence of Fy;, and Fy,, for (a) periodic array when 1.,/l,; = 10, L,/I.; =5, I,5/1,; = 20; (b) zigzag array when /,/l,; = 30, I,/

i =31, lo/lh =22

M FI,/".I FII,ZZ FI,/ll FII,ZZ
(a)

G[/GM = 102 G[/GM = 1075
3 1.2871 1.7952 0.3786 1.5998
4 1.2898 1.7989 0.3789 1.6042
5 1.2903 1.7993 0.3790 1.6051
6 1.2900 1.7988 0.3787 1.6055
(b)

G/ Gy = 60 G/ Gy = 10°
3 0.4398 0.5354 0.4588 0.4872
4 0.4407 0.5368 0.4613 0.4921
5 0.4416 0.5375 0.4628 0.4925
6 0.4413 0.5371 0.4628 0.4924
Table 2

Mechanical properties of (a) carbon fiber-reinforced plastics and (b) glass fiber-reinforced plastics

Polycarbonate/carbon fiber

Polyamid/carbon fiber

Polyphenylene sulfide/carbon fiber

(a)

Young’s modulus of matrix (MPa)
Density of matrix (g/cm?)
Young’s modulus of fiber (MPa)
Density of fiber (g/cm?)

Aspect ratio of fiber (average)
Elastic ratio Gi/Gum

Weight percent of fiber (%)
Volume percent of fiber (%)

(b)

Young’s modulus of matrix (MPa)
Density of matrix (g/cm?)
Young’s modulus of fiber (MPa)
Density of fiber (g/cm?)

Aspect ratio of fiber (average)
Elastic ratio Gi/Gy

Weight percent of fiber (%)
Volume percent of fiber (%)

2000
1.19-1.23
235,000
1.80

30

118

30
22.08-22.68

Polypropylene/glass fiber

2800
1.14-1.16
235,000
1.80

30

84

30
21.37-21.65

Polyethylene/glass fiber

3800
1.35
235,000
1.80

30

61

30
24.30

Polyethylene/glass fiber

900-1300
0.89-0.91
76,000

2.51

30

58-84

40
19.09-19.44

950-1400
0.94-0.96
76,000

2.51

30

54-80

40
19.96-20.29

3100-3200
1.04-1.05
76,000

2.51

30

24-25

40
21.62-21.79
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Table 3
(a) Fy,, and (b) Fy,, for periodic and zigzag arrays when Gy/Gy = 60, I/l = 30

Volume percent Case 1 Case 2 Case 3

of fiber (%) Zigzag Periodic Lo/l Zigzag Periodic Lo/l5 Zigzag Periodic Io/la

array array array array array array
(a)
25 0.411 0.391 15.78 0.624 0.384 17.71 0.113 0.358 20.58
20 0.441 0.435 14.09 0.706 0.424 19.61 0.119 0.393 25.72
15 0.506 0.489 12.18 0.821 0.451 20.37 0.127 0.338 34.30
5 0.855 0.801 7.02 1.125 0.776 48.13 0.563 0.713 103.11
— 0 1.556 1.556 - 1.556 1.556 - 1.556 1.556 -
(b)
25 0.450 0.399 15.78 0.788 0.386 17.81 0.310 0.365 20.58
20 0.537 0.503 14.09 0.972 0.479 19.66 0.376 0.435 25.72
15 0.650 0.586 12.18 1.043 0.559 21.27 0.400 0.431 34.30
5 1.249 1.194 7.02 1.493 1.176 46.32 1.052 1.132 103.11
— 0 2.156 2.156 - 2.156 2.156 - 2.156 2.156 -
16 —_— . . T . T 25 T T T T T
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Fig. 7. (a) Fy;,, (b) Fi,, for periodic array, (c) Fy,,, (d) Fi,, for zigzag array when G;/Gy = 60, 1.,/1,; = 30.
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Some examples of convergence are shown in Table 1 when L/l.; = 10, L.,/l., =2, I,,/I,;, = 5. Since the re-
sults obtained from W!(0) and W{(0), have a few percent differences, the average values are indicated
(Noda et al., 2000, 2003). The results have good convergence to the forth digit when M = 4-6, where M
is a number of collocation points at each division of boundaries. In the following calculation the general-
ized stress intensity factors (GSIF) are shown confirming the convergence as shown in Table 1.

4.2. Effect of volume fraction and elastic modulus ratio on the GSIF

In this study, periodic and zigzag arrays of cylindrical inclusions will be analyzed. Then, parametric stud-
ies will be conducted to address the issue of optimal arrangement of cylindrical inclusions given the same
volume fraction and material properties. Table 2 shows the mechanical properties of short fiber-reinforced
plastics. As shown in these tables, in most cases, the aspect ratio of fiber is 30; in the following calculation,
therefore, fiber’s aspect ratio is fixed as /.,/l,; = 30. In Table 3 and Fig. 7, the elastic modulus ratio is fixed
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1.0 Y (I I

0.9 y
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atD .9 L—"]

0.7 i-l0

. 1] d J1

0.6

o 1 2,03 4 5 [

Fig. 8. Results for two rectangular inclusions under plane strain when G;/Gy = 100, v; = vy = 0.3: (a) F1, at D vs. d relation (b) Fy 5,
at D vs. d relation.

Table 4
(a) F1; and (b) Fy, for periodic and zigzag arrays when volume percent of fiber V= 20%, I.1/l,; = 30
Gi/Gym Case 1 Case 2 Case 3 V— 0%
Zigzag Periodic Lo/ls Zigzag Periodic Io/ln Zigzag Periodic Lol
array array array array array array
(a)
10 0.368 0.363 14.09 0.609 0.337 18.43 0.105 0.270 25.72 0.617
60 0.441 0.435 14.09 0.693 0.404 19.31 0.119 0.361 25.72 1.556
100 0.463 0.440 14.09 0.740 0.382 19.58 0.111 0.305 25.72 1.943
(b)
10 0.582 0.567 14.09 1.038 0.507 20.50 0.402 0.453 25.72 1.124
60 0.537 0.503 14.09 0.967 0.470 19.81 0.435 0.435 25.72 2.156

100 0.492 0.476 14.09 0.850 0.429 18.77 0.356 0.356 25.72 2.673
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as Gi/Gu = 60, then the effect of volume fraction V; of fibers is considered. As shown in Fig. 7, for both
periodic and zigzag arrays, the Fy; and Fy,, decrease with increasing V. As shown in Fig. 7, for periodic
array, the Fy;, and Fy,;, decrease with increasing L,/l,,. On the other hand, for zigzag array, the F,;, and
F1;, have peak values at a certain value of /.,/],, as shown in Fig. 7.

The reason for appearing peak values in zigzag array in Fig. 7 can be explained from the results of two
rectangular inclusions in matrix as shown in Fig. 8 (Noda et al., 2000). With decreasing the distance d, the
Fy;, and Fy;, values decrease if two inclusions are in the transverse direction (see / = 10 in Fig. 8). On the
other hand, if two inclusions are in the oblique direction, the F;, and F;;, values increase with decreasing
the distance d (see /=0, 1, 2 in Fig. 8). With decreasing d in a zigzag array, two types of inclusions, which
have different interaction which have different effects of interaction, approach each other; one is in the
transverse direction, the other in the in the oblique directions. Therefore, at a certain distance the interac-
tion may be larger.

From the parametric studies for zigzag and periodic arrays, it may be concluded that large aspect ratio of
unit cell 1.,/I,, may be desirable for short fiber-reinforce composites because the singular stress is not larger
unless adjacent fibers are very close or touch.
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Fig. 9. (a) F1,,, (b) Fu,, for periodic array, (c) Fi,,, (d) Fu,, for zigzag array when V,=20%, I.1/l,; = 30.
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N
729
N
a
——F——1

Fig. 10. Two-dimensional models: (a) two rectangular inclusions and (b) a periodic array of rectangular inclusions.

4903

F1,, and Fy 5, for (a) periodic array of rectangular inclusions in Fig. 6(b) and (b) periodic array of cylindrical inclusions in Fig. 3 when
Gi/Gr = 102, Ly/1,1 =10

Lafl Lo/l

Fru1 (A4 = 0.76323491) Fir o (Jo = 0.62184397)

2 5 10 2 5 10
(a)
5 0.486 0.472 0.470 0.706 0.775 0.806
10 0.609 0.603 0.602 0.925 0.967 0.983
20 0.672 0.656 0.655 1.038 1.016 1.026
30 0.702 0.666 0.665 1.086 1.018 1.023
50 0.731 0.672 0.670 1.131 1.019 1.019
(b)

L5 2 5 L5 2 5
5 0.935 0.942 0.953 1.247 1.284 1.357
10 1.238 1.229 1.233 1.725 1.708 1.731
15 1.309 1.281 1.280 1.832 1.784 1.788
20 1.328 1.298 1.290 1.869 1.810 1.799
25 1.347 1.303 1.294 1.890 1.813 1.802
30 1.359 1.309 1.295 1.904 1.816 1.803
50 - 1.314 1.295 - 1.820 1.803

For ('d): FI,ZI i 0671, FIL;Q — 1.018 if lrz/lrl — 0 lz'_;/l:1 — 0OQ.
For (b) FI,}MI — 1297, FI],ZZ — 1.804 if lrz/ln — 00 1:2/1:1 — Q.
Region within 1% interaction are in italics.
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In Table 4 and Fig. 9, the volume fraction is fixed as V=0 and 20%, then the effect of elastic ratio
G/ Gy is considered. As shown in Tables 2 and 3, V= 20% corresponds to most cases of the reinforced
plastics. In Fig. 9, each curve corresponds to the distinct singularity index 4,, 4,. With increasing the elastic
ratio® as Gi/Gy = 10 — 100, the interaction becomes larger under the same geometrical condition. For
example, when Gj/Gy =100, as shown in Fig. 9, Fy, /F1y, |D 0 =0.06-0.38, Fyy,»/
FI“2|V H0—013 —0.32. On the other hand when GI/GM—IO FI)I/FI/I‘V H0—017 099 FII)Z/
Fi ;2|V _o =0.36-0.92. From the results of zigzag arrays in Fig. 9, it should be noted that F 1), and
Fu, have largest values at .,/,, = 20 when V;= 20% almost independent of Gy/G.

4.3. Comparison between 3D arrays and 2D arrays

In the previous studies the interaction between two rectangular inclusions as shown in Fig. 10(a) have
been treated as a two-dimensional models of fibers (Noda et al., 1998, 2000). Since it is very difficult to deal
with the three-dimensional problem of Fig. 10(a), it is important to discuss the difference between the re-
sults of two- and three-dimensional modeling. In Table 5 and Fig. 11, the results of a periodic array of
cylindrical inclusions are compared with the ones of a periodic array of rectangular inclusions when
Gi/Gym = 107 and 1,/1,; = 10. In this case, if the size of unit cell is larger enough, the results coincide with
the ones of a single inclusion, that is, Fy; — 1.297 and Fy;;, — 1.804 for a cylindrical inclusion, and
Fi, —0.671 and F;; — 1.018 for a rectangular inclusion. In Fig. 11, first, consider the case of
l,»/1.1 = 50 and I,/I.; = 2, where the distance in the r-direction is large enough. Because of the interaction
of fibers in the z-direction, the Fy, is larger than the case of .,/.; — oo by 9% for rectangular inclusions,
and by 1% for cylindrical inclusions. In other words, the effect of distance /., is smaller in 3D arrays than in
2D arrays. Next, assume the distance in the z-direction is large enough, for example, L,/I.; = 5. Then, it is
found that if /,,/1,; > 30 the effect of interaction on Fy, is less than 1% for 2D inclusions. On the other
hand, if I.,/l.,;, = 5 and l.,/l,; = 20 for cylindrical inclusions, the effect of interaction on is less than 1%.
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0.6} // G/ Gy =10% ]
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Fig. 11. Comparison between rectangular inclusion and cylindrical inclusions.
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The effect of the distance in the r-direction in 3D arrays is also smaller than in 2D arrays. The region is
indicated by a solid line in Table 5.

4.4. The region within 1% interaction

In this section, spacing of fibers when the interaction can be negligible will be considered assuming peri-
odic arrangement. Table 6(a) shows the results when Gi/Gy = 10% and 1.,/1,; = 5. From Table 6(a), it is seen
that if /,,/1,; = 5 for 1.1/I,; = 2 the interaction on Fy, is less than 1%. Also, if /,,/l,; > 50 for 1.,/1,; = 30,
the interaction on F ;, is less than 1%. That means, with increasing the fiber length, the interaction becomes
larger. Similarly, Table 6(b) shows the results when Gi/Gy = 10 and 1.,/1.; = 2. When /1., = 10, [,,/l., =5
for Gi/Gu = 10, F);, decreases by 11%. Under the same geometrical condition, F;;, decreases by 27% for
Gi/Gum = 102, In other words, with increasing the elastic ratio Gy/Gy, the effect of interaction becomes lar-
ger. Similar tendency can been seen in Table 3(c) for Gi/Gy = 2 with L/l = 2.

Table 6
Fy; and Fy,, for periodic array of cylindrical inclusions in Fig. 3. (a) Gi/Gm = 10% and L,/1,, =10 (b) Gi/Gy = 10 and L,/l,; =2
(¢) Gi/Gm =2 and /1

(a) Lo/l L/l
Fr 1 (4 =0.76323491) Fip 55 (A, =0.62184397)
2 10 20 30 2 10 20 30
3 0.451 - - - 0.725 - - —
5 0.485 0.953 0.973 1.055 0.755 1.357 1.365 1.381
10 0.493 1.233 1.493 1.529 0.757 1.730 2.073 2.117
20 0.496 1.290 1.709 1.849 0.760 1.799 2.363 2.549
30 0.497 1.295 1.738 1.910 0.761 1.803 2.399 2.631
50 0.497 1.295 1.746 1.930 0.761 1.804 2.407 2.660
00 0.495 1.297 1.753 1.943 0.759 1.804 2.416 2.673
(b) Lo/l Ll
5 10 100 5 10 100
5 0.510 0.553 - 0.936 0.963 -
10 0.538 0.584 0.585 0.996 1.063 1.061
15 0.539 0.594 0.602 0.997 1.083 1.095
20 0.540 0.596 0.608 0.997 1.089 1.107
30 0.541 0.598 0.612 0.998 1.087 1.115
50 - 0.599 0.616 - 1.089 1.121
o0 0.540 0.599 0.618 0.996 1.087 1.121
(c) ol Ly/l
Fr ;1 (41 =0.91091019) Fip.5 (42, =0.9810170)
10 30 60 100 10 30 60 100
5 0.250 0.250 0.251 0.250 3.235 3.238 3.239 3.240
10 0.253 0.254 0.252 0.251 3.282 3.282 3.271 3.242
15 0.253 0.254 0.255 0.252 3.288 3.289 3.288 3.273
20 0.254 0.254 0.255 0.253 3.291 3.291 3.290 3.287
30 0.255 0.255 0.255 0.254 3.295 3.298 3.298 3.296

50 0.255 0.255 0.255 0.255 3.299 3.301 3.301 3.300
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Fig. 12. Region within 1% interaction.

Fig. 12 shows the region of /,,/1.;, where the interaction is less than 1%, as a function of L.,//.;. As shown
in Fig. 12, with increasing L,/l.;, the larger distance /,,//,; is necessary for less than 1% interaction.

Regarding the region of /.,/I.;, we can see the following. When Gy/Gy = 10%, Lo/l = 5 is necessary for
less than 1% interaction. Also, when Gy/Gy < 10, Lo/l.; = 2 is necessary for less than 1% interaction.

5. Conclusion

To evaluate the mechanical strength of fiber-reinforced composites it is necessary to evaluate singular
stresses at the end of fibers. In this paper, therefore, periodic and zigzag arrays of cylindrical inclusions
in matrix under longitudinal tension are analyzed by the application of the body force method. The con-
clusions can be made in the following way.

(1) Generalized stress intensity factors at the fiber end are systematically calculated and shown in Figures
and Tables with varying the elastic ratio, length, and spacing of fibers. The interaction becomes larger
with increasing fiber length and elastic ratio. The region when the interaction effect is less than 1% is
shown in figure as a function of fiber length.

(2) As shown in Fig. 12, for both periodic and zigzag arrays, the F;, and Fy;,, decrease with increasing
Vs For periodic array, the F;, and Fyy,, decrease with increasing the aspect ratio of the unit cell. On
the other hand, for zigzag array, the F;;,, and F;,, have peak values at a certain value of as shown in
Fig. 12.

(3) From the parametric studies for zigzag and periodic arrays, it may be concluded that large aspect
ratio of unit cell I.,/1,, may be desirable for short fiber-reinforce composites because the singular stress
is not larger unless adjacent fibers are very close or touch. From the results of zigzag arrays in Fig. 9,
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it should be noted that Fy, and Fy,, have the largest values at /.,//,» =20 when V= 20% almost
independent of Gi/Gy. With increasing the elastic ratio as Gi/ Gy = 10-100, the interaction becomes
larger under the same geometrical condition as shown in Fig. 8.
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Appendix A. Relation between the results of given and auxiliary problems

In this study two auxiliary problems were analyzed instead of solving Fig. 4 directly. The final results
were given by Eq. (10), which can be derived in the following way. The boundary conditions of the given
problem as shown in Fig. A.1(a) are 6.,, = 0, 0,4y = 0, and the results are F" i Fin,- Here o2y is an aver-
age stress at z = +/,,, and g,,, is an average stress at r = l, . On the other hand, the boundary conditions in
Fig. A.1(b) are 0.,y =0, 0,4y = 7}, and the results are F? Ty F ,,- Under this situation, the dimensionless
stress intensity factors, for auxiliary problems as shown in Fig. A.2 can be expressed as follows:

03
F?J F171+ FI/1 F? _FIIA1+G_4FIJ~I (A-l)

zav_

A
->
.grav

V vy

l}.l’ 1112 1),1’ 1111

(@) (b)

Fig. A.1. Problems to be solved (a), (b).
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Fig. A.2. Auxiliary problems (a), (b).
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s 11,4,

a () 03
Fy by Fuy, + a_lF, Ffl,/lz = Fing +0—4F11J~2 (A-Z)

From these equations, we have
Fi, —(02/01)F};,
1 —(02/01)(03/04)

F?l,zz - (JZ/GI)F?L).Z

1 = (02/01)(03/04)

Fi; = Fy,, =
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